paper
arXiv cs.CV
November 18th, 2025 at 5:00 AM

AdaptFly: Prompt-Guided Adaptation of Foundation Models for Low-Altitude UAV Networks

arXiv:2511.11720v1 Announce Type: new Abstract: Low-altitude Unmanned Aerial Vehicle (UAV) networks rely on robust semantic segmentation as a foundational enabler for distributed sensing-communication-control co-design across heterogeneous agents within the network. However, segmentation foundation models deteriorate quickly under weather, lighting, and viewpoint drift. Resource-limited UAVs cannot run gradient-based test-time adaptation, while resource-massive UAVs adapt independently, wasting shared experience. To address these challenges, we propose AdaptFly, a prompt-guided test-time adaptation framework that adjusts segmentation models without weight updates. AdaptFly features two complementary adaptation modes. For resource-limited UAVs, it employs lightweight token-prompt retrieval from a shared global memory. For resource-massive UAVs, it uses gradient-free sparse visual prompt optimization via Covariance Matrix Adaptation Evolution Strategy. An activation-statistic detector triggers adaptation, while cross-UAV knowledge pool consolidates prompt knowledge and enables fleet-wide collaboration with negligible bandwidth overhead. Extensive experiments on UAVid and VDD benchmarks, along with real-world UAV deployments under diverse weather conditions, demonstrate that AdaptFly significantly improves segmentation accuracy and robustness over static models and state-of-the-art TTA baselines. The results highlight a practical path to resilient, communication-efficient perception in the emerging low-altitude economy.

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2511.11720