Fair In-Context Learning via Latent Concept Variables
arXiv:2411.02671v2 Announce Type: replace-cross Abstract: The emerging in-context learning (ICL) ability of large language models (LLMs) has prompted their use for predictive tasks in various domains with different data types, including tabular data, facilitated by serialization methods. However, with increasing applications in high-stakes domains, it has been shown that LLMs can inherit social bias and discrimination from their pre-training data. In this work, we investigate inherent bias in LLMs during in-context learning with tabular data. We focus on an optimal demonstration selection approach that utilizes latent concept variables for resource-efficient task adaptation. We design data augmentation strategies that reduce the correlation between predictive outcomes and sensitive variables, helping promote fairness during latent concept learning. We utilize the learned concept to select demonstrations and obtain fair predictions. The latent concept variables are learned using a smaller internal LLM and generalized to larger external LLMs. We empirically verify that the fair latent variable approach improves fairness results on tabular datasets compared to multiple heuristic demonstration selection methods.
Score: 2.80
Engagement proxy: 0
Canonical link: https://arxiv.org/abs/2411.02671