paper
arXiv cs.AI
November 18th, 2025 at 5:00 AM

Orthogonal Soft Pruning for Efficient Class Unlearning

arXiv:2506.19891v2 Announce Type: replace-cross Abstract: Efficient and controllable data unlearning in federated learning remains challenging, due to the trade-off between forgetting and retention performance. Especially under non-independent and identically distributed (non-IID) settings, where deep feature entanglement exacerbates this dilemma. To address this challenge, we propose FedOrtho, a federated unlearning framework that combines orthogonalized deep convolutional kernels with an activation-driven controllable one-shot soft pruning (OSP) mechanism. FedOrtho enforces kernel orthogonality and local-global alignment to decouple feature representations and mitigate client drift. This structural independence enables precise one-shot pruning of forgetting-related kernels while preserving retained knowledge. FedOrtho achieves SOTA performance on CIFAR-10, CIFAR100 and TinyImageNet with ResNet and VGG frameworks, verifying that FedOrtho supports class-, client-, and sample-level unlearning with over 98% forgetting quality. It reduces computational and communication costs by 2-3 orders of magnitude in federated settings and achieves subsecond-level erasure in centralized scenarios while maintaining over 97% retention accuracy and mitigating membership inference risks.

#ai

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2506.19891