Enhanced Structured Lasso Pruning with Class-wise Information
arXiv:2502.09125v3 Announce Type: replace-cross Abstract: Modern applications require lightweight neural network models. Most existing neural network pruning methods focus on removing unimportant filters; however, these may result in the loss of statistical information after pruning due to failing to consider the class-wise information. In this paper, we employ the structured lasso from the perspective of utilizing precise class-wise information for model pruning with the help of Information Bottleneck theory, which guides us to ensure the retention of statistical information before and after pruning. With these techniques, we propose two novel adaptive network pruning schemes in parallel: sparse graph-structured lasso pruning with Information Bottleneck (sGLP-IB) and sparse tree-guided lasso pruning with Information Bottleneck (sTLP-IB). The key component is that we prune the model filters utilizing sGLP-IB and sTLP-IB with more precise structured class-wise relatedness. Compared to multiple state-of-the-art methods, our approaches achieve the best performance across three datasets and six model structures on extensive experiments. For example, with the VGG16 model based on the CIFAR-10 dataset, we can reduce the parameters by 85%, decrease the FLOPs by 61%, and maintain an accuracy of 94.10% (0.14% better than the original). For large-scale ImageNet, we can reduce the parameters by 55% while keeping the accuracy at 76.12% (only drop 0.03%) using the ResNet architecture. In summary, we succeed in reducing the model size and computational resource usage while maintaining the effectiveness of accuracy.
Score: 2.80
Engagement proxy: 0
Canonical link: https://arxiv.org/abs/2502.09125