paper
arXiv cs.AI
November 18th, 2025 at 5:00 AM

Binary Verification for Zero-Shot Vision

arXiv:2511.10983v1 Announce Type: cross Abstract: We propose a training-free, binary verification workflow for zero-shot vision with off-the-shelf VLMs. It comprises two steps: (i) quantization, which turns the open-ended query into a multiple-choice question (MCQ) with a small, explicit list of unambiguous candidates; and (ii) binarization, which asks one True/False question per candidate and resolves deterministically: if exactly one is True, select it; otherwise, revert to an MCQ over the remaining plausible candidates. We evaluate the workflow on referring expression grounding (REC), spatial reasoning (Spatial-Map, Spatial-Grid, Spatial-Maze), and BLINK-Jigsaw. Relative to answering open-ended queries directly, quantization to MCQ yields large gains, and True/False binarization provides a consistent additional boost. Across all tasks, the same workflow produces significant improvements, indicating generality. Our theory formalizes how open-ended vision queries can be quantized to MCQs and further binarized into True/False verifications, establishing a hardness ladder. A simple analysis explains why Boolean resolution boosts accuracy. Together, these components yield a simple and unified workflow that emphasizes inference-time design over task-specific training. It offers a practical, drop-in path to stronger zero-shot vision with today's VLMs.

#ai

Score: 2.80

Engagement proxy: 0

Canonical link: https://arxiv.org/abs/2511.10983