Unsupervised Cycle Detection in Agentic Applications
arXiv:2511.10650v1 Announce Type: cross Abstract: Agentic applications powered by Large Language Models exhibit non-deterministic behaviors that can form hidden execution cycles, silently consuming resources without triggering explicit errors. Traditional observability platforms fail to detect these costly inefficiencies. We present an unsupervised cycle detection framework that combines structural and semantic analysis. Our approach first applies computationally efficient temporal call stack analysis to identify explicit loops and then leverages semantic similarity analysis to uncover subtle cycles characterized by redundant content generation. Evaluated on 1575 trajectories from a LangGraph-based stock market application, our hybrid approach achieves an F1 score of 0.72 (precision: 0.62, recall: 0.86), significantly outperforming individual structural (F1: 0.08) and semantic methods (F1: 0.28). While these results are encouraging, there remains substantial scope for improvement, and future work is needed to refine the approach and address its current limitations.
Score: 2.80
Engagement proxy: 0
Canonical link: https://arxiv.org/abs/2511.10650